Machine Learning
without Biases

Learning to create "fair* models

Yordan Darakchiev Lé??g
iordan93@gmail.com - . -




Cognitive heuristics

= "Mental shortcuts" that help us solve problems
v'Reduce the number of variables (feature selection)
v'Reduce the "sample space" (data filtering)

v'Reduce the time to reach a solution (lazy evaluation)
v'Rely on past experience (greedy approach)

= Can lead to errors (cognitive biases)
x Confirmation bias
xStatus-quo bias
x Authority bias, bandwagon bias
xLoss-aversion bias




What is bias in machine learning?

= Machine learning algorithms make decisions every day
= Assessing employee satisfaction
= Predicting credit defaults
= Spotting criminals
» Treating deadly diseases

= Qur algorithms need tons of data to learn

When faced with radically different data,
their behavior is undefined

= \We want Al to make better decisions than us
= But it ends up amplifying our own unconscious biases




What can go wrong?

= Google image recognition, 2015
= Recognizes pictures of African Americans as gorillas

= Microsoft Tay, 2016
= L earns from Twitter posts

= |BM Watson, 2017/
= Memorizes the entire Urban Dictionary

» US court risk assessment, recidivism assessment, 2016-2017
= Predicts non-Caucasians will re-offend up to 2x more

= iPhone facial recognition, 2017-2018
= Can't recognize dark-skinned people

= Amazon recruitment, 2018
= Strongly prefers male resumes




What can we do?

= Two main points
= Mathematical algorithms to reduce bias
= A lot of manual work

» Gathering diverse samples is key!

= Most machine learning algorithms act as "black boxes"

= We don't really see how an algorithm might be biased
unless we get data to prove it

= |s real-world testing safe?

= Can we afford having two, three, or ten iterations of our
algorithm run before de-biasing them?

= |s de-biasing adding additional layers of bias?
= What other prejudices remain?




But who are we?
= Kaggle, 2018 demographics survey results (source)
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https://www.kaggle.com/headsortails/what-we-do-in-the-kernels-a-kaggle-survey-story

How can the business help?

= We're good at maths
= and we know how to work with data

= You know your priorities, criteria, targets, and KPIs
= Gather diverse data (e.g. user backgrounds)
= Gather diverse user feedback
= Work with us to create fair, unbiased KPIs

= Help us identify potential bias
= E.g. gender, race, marital status, location

= Help us create a common language

= Understand that everyone is biased...
= ... but that doesn't mean our algorithms should be :)







